
THE STRUCTURES OF NOVEL ANTIBIOTICS, SAFRAMYCIN B AND C

Tadashi Arai^{*}

Department of Antibiotics, Research Institute for Chemobiodynamics, Chiba University, Inohana, Chiba, Japan Katsuhiro Takahashi Chiba Cancer Center Research Institute, Nitona, Chiba, Japan Akinori Kubo^{*} and Shinsuke Nakahara Meiji College of Pharmacy, Nozawa, Setagaya, Tokyo, Japan Sadao Sato, Kimie Aiba and Chihiro Tamura^{*} Central Research Laboratories, Sankyo Co. Ltd. Hiromachi, Shinagawa, Tokyo, Japan

The structure of saframycin C(3) has been established by an X-ray crystallographic analysis; this result allows the assignment of structure to the closely related saframycin B(2) by ¹³C NMR spectroscopy.

We have described the isolation of a number of satellite antibiotics derived from streptothricin-producing strain of *Streptomyces lavendulae* No. 314.¹ One of the satellite antibiotics was designated mimosamycin and its structure was determined as 7-methoxy-2,6-dimethyl-3,5,8-trioxo-2,3,5,8-tetrahydroisoquinoline(1) by an X-ray crystallographic analysis² and its total synthesis.³ We reported the isolation and biological

2355

properties of novel antibiotics, saframycin A, B, C, D and E from the same strain. 4

We wish to report here the structural elucidation of two major antibiotics, saframycin B(2) and C(3), possessing dimeric structures of mimosamycin(1).

Saframycin B and C were obtained from the basic fractions of the methylene chloride extract of the cultured broth and purified by silica gel and LH-20 Sephadex column chromatography.

The physical constants of saframycin B(2), orange yellow prisms, are as follows: mp 108-109°(ether); $[\alpha]_{D}$ -54.4°(MeOH); $C_{28}H_{31}N_{3}O_{8}$; mass spectrum m/e(%):537(M⁺,14),437(M-100,100),220(68),218(46); UV λ_{max}^{MeOH} nm(log ε):269 (4.35),368(3.13); CD(MeOH):275nm($\Delta\varepsilon$ -14.8); IR ν_{max}^{CHC1} 3 cm⁻¹:3430,1720,1690, 1660,1620. The ¹H NMR spectrum(CDCl₃,100MHz) showed signals at δ 1.90 (s),1.98(s),2.23(s),2.28(s),4.00(2xs) due to six methyl groups.

Its ¹³C NMR spectrum(CDCl₃) revealed the nature of the methyl groups $[\delta 8.6(2xC-CH_3), 24.2(COCH_3), 41.2(N-CH_3), 60.9(2xOCH_3)]$ and showed six pairs of singlets at $\delta 127-187$ ascribed to the quaternary aromatic and carbonyl carbons. Comparisons of these ¹³C NMR data with those of mimosamycin (1)⁵(Table 1) and 3,6-dimethoxythymoquinone⁶ revealed the presence of two 2-methyl-3-methoxy-*p*-benzoquinone moieties in 2.

Saframycin C(3), orange red needles; mp 143-146°(ether); $[\alpha]_{D}$ -20.8° (MeOH); $C_{29}H_{33}N_{3}O_{9}$, gave the following spectral data: mass spectrum m/e $(\$):567 (M^+, 2), 537 (M-30, 2), 467 (M-100, 20), 437 (20), 220 (26), 218 (100); UV \lambda_{max}^{MeOH}$ nm(log ϵ):266.5(4.32),368(3.19); CD(MeOH):273nm($\Delta \epsilon$ -28.3); IR v_{max}^{CHC1} 3 cm⁻¹: The 1 H NMR spectrum(CDCl₃) showed signals at 3400,1720,1685,1655,1615. δ1.86(s),2.00(s),2.38(s),2.44(s),3.46(s),3.96(2xs) due to seven methyl Its ¹³C NMR spectrum(CDCl₂) revealed the nature of the all groups. methyl groups[68.7,9.0(2xC-CH3),24.3(COCH3),42.3(N-CH3),59.3,60.9 and 61.0 Further features included the presence of the characteris-(3xOCH₂)]. tic six pairs of singlets at δ 127-187, which were almost identical to those These spectral data indicated that 3 had the same carbon skeleton of 2. as 2 and an additional methoxy group(δ 59.3) which should be located at the

Carbon No.	1	Carbon No.	2	3
5	183.5	5 or 15	185.7 or 187.0	185.5 or 186.6
6	133.6	6 or 16	127.7 or 129.2	127.9 or 130.7
7	159.5	7 or 17	155.5 or 156.1	155.4 or 156.1
8	177.3	8 or 18	181.3 or 182.8	181.3 or 183.2
9	111.3	9 or 19	136.3 or 136.6	136.6 or 136.6
10	138.9	10 or 20	141.6 or 142.8	141.5 or 141.6
6-CH3	9.7	6 or 16 -CH ₃	8.6 or 8.6	8.7 or 9.0
7-0CH ₃	61.3	7 or 17 - ^{0CH} 3	60.9 or 60.9	60.9 or 61.0
N-CH3	38.5	N-CH3	41.2	42.3
		1 or 11	52.2 or 54.8	55.2 or 55.7
		3 or 13	56.9 or 57.4	57.6 or 58.0
		4	25.6(t)	25.5(t)
		14	22.7(t)	71.9(d)
		14-0CH ₃		59.3
		21	58.7(t)	55.7(t)
		22	40.4(t)	40.7(t)
		NHCO	160.1	160.2
		соснз	24.2, 196.5	24.3, 196.5

Table 1 13 C Chemical Shifts(δ) of Mimosamycin(1), Saframycin B(2) and C(3) in CDCl₃⁷

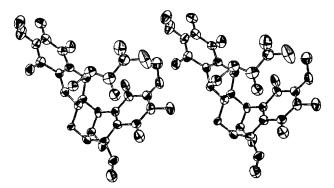


Figure 1. Stereoprojection of Saframycin C(3)

methylene carbon(δ 22.7) adjacent to the one of *p*-quinone moieties in 2.

The complete structure and stereochemistry of 3 was established by an X-ray crystallographic study of its hydrobromide, orange prisms(acetone), mp >280°, $C_{29}H_{33}N_3O_9 \cdot HBr \cdot H_2O$. The crystals were found to have monoclinic space group $P2_1$. Cell dimensions measured on a Rigaku four circle diffractometer were; a = 11.819(3) b = 19.644(5) c = 7.650(3) Å, $\beta = 114.7^\circ$.

A total of 2014 independent reflections accessible with $CuK\alpha$ radiation below $2\theta = 128^\circ$ were collected on the diffractometer. The structure was solved by heavy atom technique and the block diagonal least-squares refinement reduced the R factor to the final value of 0.085. The hetero atoms were assigned by means of chemical information, temperature factors of each atoms and their bond lengths and angles. Figure 1 shows the stereoscopic view of this salt which refers to the conformational feature of 3.

Saframycin B and C therefore have the structures depicted in 2 and 3 or their antipodes.

References and Notes

- T.Arai, K.Yazawa, Y.Mikami, A.Kubo and K.Takahashi, J. Antibiotics (Tokyo), 29, 398(1976).
- T.Hata, H.Fukumi, S.Sato, K.Aiba and C.Tamura, Acta Crystallogr., <u>B34</u>, 2899(1978).
- 3) H.Fukumi, H.Kurihara, T.Hata, C.Tamura, H.Mishima, A.Kubo and T.Arai, Tetrahedron Letters, 3825(1977); H.Fukumi, H.Kurihara and H.Mishima, Chem. Pharm. Bull. (Tokyo), 26, 2175(1978).
- 4) T.Arai, K.Takahashi and A.Kubo, J. Antibiotics(Tokyo), 30, 1015(1977).
- 5) H.Fukumi, F.Maruyama, K.Yoshida, M.Arai, A.Kubo and T.Arai, J. Antibiotics(Tokyo), <u>31</u>, 847(1978).
- L.F.Johnson and W.C.Jankowski, "Carbon-13 NMR Spectra", A Wiley-Interscience Publication, New York, 1972, No. 436.
- 7) Natural-abundance ¹H noise decoupled (PND) and off-resonance ¹³C FT NMR spectra were recorded on a Jeol FX-60 and FX-100 FT NMR spectrometer. TMS served as an internal reference ($\delta 0$).

.

(Received in Japan 29 January 1979)